Plastics – the Facts is an analysis of the latest data related to plastics production, demand, conversion and waste management in Europe. It also provides information on key figures of the European plastics industry. In short, this report gives an insight into the industry’s contribution to European society.
Table of content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to European society</td>
<td>10</td>
</tr>
<tr>
<td>World plastics data</td>
<td>14</td>
</tr>
<tr>
<td>European plastics data</td>
<td>24</td>
</tr>
<tr>
<td>End-of-life management in EU27+3</td>
<td>43</td>
</tr>
<tr>
<td>End-of-life management in selected countries</td>
<td>57</td>
</tr>
<tr>
<td>Outlook</td>
<td>75</td>
</tr>
<tr>
<td>List of acronyms</td>
<td>79</td>
</tr>
</tbody>
</table>
Welcome to the 2022 edition of Plastics - the Facts.

This year’s data confirms that after a turbulent period, global plastics manufacturing is bouncing back. In 2021 global production rose 4% to more than 390 million tonnes demonstrating the strong and continuing demand for plastics.

However, in Europe in particular, there are challenges ahead. Our latest data show that China’s share of global plastics production continues to grow (reaching 32% in 2021) while Europe’s share – which reached 57.2 million tonnes in 2021 – continues to decline (hitting 15%). This confirms a loss of competitiveness that could be exacerbated further by energy and logistics crises resulting from the war in Ukraine and the ongoing Covid pandemic.

Virginia Janssens, Managing Director Plastics Europe
The European plastics manufacturing industry is in transition. Every week I witness our member companies investing huge amounts of capex, time, energy, imagination, and expertise to meet our 2050 net zero and circularity targets sustainably. Our members are undertaking huge investments and a far-reaching reorganisation of their production and technology base. In so doing they are seeking ways to solve issues like plastics waste and climate change, while continuing to offer its various value chains, consumers and society the many benefits that plastics offer.

At Plastics Europe we are evolving too. Every day, we strive to be the catalyst for the industry to contribute to the goals of international climate agreements such as the COP and the EU’s Green Deal.

To support this effort, an independent report, commissioned by Plastics Europe and called “ReShaping Plastics: pathways to a circular, climate neutral plastics system in Europe”, was published in April this year. A living roadmap is now also being developed by Plastics Europe and its members, setting out concrete milestones, actions and KPIs to track progress on our transformation journey, also enhancing value chain collaboration.

To help monitor progress we need more reliable and comprehensive data. In this edition of “Plastics – the Facts” we have therefore included production and demand data for biobased, bio-attributed and post-consumer recycled plastics for the first time.

Plastics Europe recognises that to transition to net zero by 2050, faster systemic change and more intense and effective collaboration between all parts of the European plastics’ system and policy makers are essential. We also need a new and enabling policy framework that better incentivises investment and innovation by fostering a climate of creative competition in a circular economy for plastics.

I am very proud of the progress that we have made as an industry over the past year and look forward to deepen collaboration with all stakeholders to keep the European industry globally competitive as the EU transitions to net zero and circularity.
Notice to the reader

A more exhaustive analysis of plastics progress towards circularity in Europe is available in the “The Circular Economy for Plastics – A European Overview”.

The data presented in this report was collected by Plastics Europe (the pan-European association of plastics manufacturers) and EPRO (the European Association of Plastics Recycling and Recovery Organisations). Plastics Europe’s members, gathered in the Plastics Europe’s Market Research Group (PEMRG), provided input on the plastics demand by converters. Conversio Market & Strategy GmbH helped assess plastics production and conversion, waste collection and treatment data. Official statistics from European or national authorities and waste management organisations have been used, where available. Research or expertise from consultants completed gaps. Figures cannot always be directly compared with those of previous years due to changes in estimates.

All figures and graphs in this report show data for EU27 plus Norway, Switzerland and the United Kingdom, which is referred to as Europe for the purposes of abbreviation – other country groups are explicitly listed.

Data presented in this report cover thermoplastics and thermosets.

Data presented in this report are rounded estimations (except Eurostat data).
New data and definitions

With the view of generating data that can help to address today’s sustainability challenges, and to ensure comparability and coherence with other reports and studies, Plastics Europe has reviewed some concepts’ definitions and the scope of its datasets.

For this edition of Plastics – the Facts, new figures and graphs were developed for the global and European plastics production*. As from 2021 data, production figures will be shown by type of feedstock: i.e., fossil-based, post-consumer recycled or bio-based/bio-attributed plastics production.

For 2021, data on post-consumer recycled plastics use by converters has also been added.

Polymers that are not used in the conversion of plastics parts and products (i.e., quantities used for adhesives, sealants, coatings, paints, varnishes, textiles waterproofing, or within the production of cosmetics, medicines or chemical processes) are now excluded from the scope of the production, demand, conversion and end-of-life management data. PVC-, PO- and PU-fibers are included, whereas PA-fibers, PET-, PBT-, or acrylic polyesters are not included.

Those changes explain data differences with the previous editions of Plastics – the Facts.

For a more exhaustive analysis of plastics progress towards circularity, please consult Plastics Europe’s report The Circular Economy for Plastics – A European Overview.

*Including plastics production from polymerisation and production of mechanically recycled plastics
The circularity of plastics

The circular and climate neutral plastics economy is a system in which plastics are produced, converted, used and managed in a sustainable way.

5.5 Mt post-consumer recycled plastics were used in new products and parts in the EU27+3 in 2021, representing about 10% recycled content rate in plastics conversion, and an increase of about 20% compared to 2020.

Today, most plastics are still produced from fossil-based feedstock. Transitioning to a circular, climate neutral economy demands investment and innovation from the plastics value chain to develop new business models for reuse, produce more recycled plastics and new feedstocks that are less dependent on fossil-based oil and gas. Plastics Europe continues working towards improving knowledge and data on plastics circularity.
1. Does not include elastomers, adhesives, coatings and sealants. 2. Pre-consumer plastics waste is mainly originating from the plastics conversion and from plastics production (polymerisation) to a lesser extent. 3. Compounding of recycled plastics and plastics from polymerisation may occur prior conversion. 4. Includes chemical recycling. 5. Process losses are usually sent to energy recovery or landfill. Parts of plastics residues could be a potential future source of chemical recycling.
Contribution to European society
“An industry employing more than 1.5 million people across the European Union”.
The European plastics industry: key figures

The European plastics industry includes plastics manufacturers, converters, recyclers and machinery manufacturers.

>1.5 million employment*

In 2021, the plastics industry gave direct employment to more than 1.5 million people in the European Union, a small increase compared to 2020.

52,000 companies*

An industry with over 52,000 companies, most of them SME’s, distributed across the European Union.

>400 billion € turnover*

The European plastics industry (EU27) had a turnover of approximately 405 billion euros in 2021.

*2021 Plastics Europe estimations – Eurostat official data only available until 2019.
14.4 billion €

trade balance

The European plastics industry (EU27) had a positive trade balance of 14.4 billion euros in 2021.

>10 Mt

sent to recycling

More than 10 million tonnes of post-consumer plastics waste were sent to recycling in 2020 in the EU27+3.

8th

ranking value-added

The European plastics industry (EU27) ranks 8th in Europe in industrial value-added contribution**, positioned after the manufacturing of electrical equipment.

~5.5 Mt

post-consumer recycled plastics

In 2021, about 5.5 million tonnes of post-consumer recycled plastics were reintroduced in the EU27+3 economy, an increase of about 20% compared to 2020.

* 2021 Plastics Europe estimations – Eurostat official data only available until 2019.
** Measured by value added at factor cost, 2019.
World plastics data
“Global plastics production bouncing back in 2021 after a turbulent period”.
After a stagnation in 2020 due to the Covid-19 pandemic, the global plastics production increased to 390.7 million tonnes in 2021.

Sources: Conversio Market & Strategy GmbH and nova-Institute
The above data are rounded estimations.
*Including plastics production from polymerisation and production of mechanically recycled plastics
Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included
1. Includes fossil-based thermoplastics, thermosets and PUR
2. Data on post-consumer recycled plastics had been developed in 2018, data for other years are estimations
390.7 Mt
world plastics production*

For the first time, Plastics - the Facts presents World plastics production data excluding polymers that are not used in the conversion of plastic parts and products (i.e., for adhesives, sealants, coatings, paints, varnishes, or within the production of cosmetics, medicines or chemical processes). Post-consumer recycled and bio-based/bio-attributed plastics production quantities are included for the first time.

As in previous editions, quantities used for textiles or textiles waterproofing, are excluded. The scope includes thermoplastics and thermosets.

*Including plastics production from polymerisation and production of mechanically recycled plastics
In 2021, 90.2% of the world plastics production was fossil-based. Post-consumer recycled plastics and bio-based/bio-attributed plastics respectively accounted for 8.3% and 1.5% of the world plastics production.

Sources: Conversio Market & Strategy GmbH and nova-institute
The above data are rounded estimations.
Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
*Including plastics production from polymerisation and production of mechanically recycled plastics
1. nova-Institute 2022; data for bio-based structural polymers, preliminary estimations for 2021
Distribution of the global plastics production*

In 2021, China reached almost one third of the world’s plastics production.

- **North America**¹ 18% - 18%
- **EU27+3** 19% - 15%
- **China** 29% - 32%
- **Japan** 4% - 3%
- **Middle East, Africa** 7% - 8%
- **Rest of Asia** 17% - 17%

Global Plastics Production in 2021: 390.7 Mt

Sources: Conversio Market & Strategy GmbH and nova-institute

The above data are rounded estimations.

Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.

*Including plastics production from polymerisation and production of mechanically recycled plastics

**Only thermoplastics and PUR

1. Canada, Mexico and the United States
2. Commonwealth of Independent States: Azerbaijan, Armenia, Belarus, Kazakhstan, Kyrgyzstan, Moldova, Russia, Tajikistan, Turkmenistan, Uzbekistan and Ukraine

PLASTICS EUROPE PLASTICS - THE FACTS 2022 | OCTOBER 2022
In 2021, circular plastics represented about 9.8% of the world plastics production.

Sources: Conversio Market & Strategy GmbH and nova-Institute
The above data are rounded estimations.
Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
*Including plastics production from polymerisation and production of mechanically recycled plastics
1. Includes PBT, PEEK, PEI, POM, PPA, PSU/PPSU, PTFE, PVDF and other thermoplastics not listed separately
Distribution of the global plastics use by application

In 2021, packaging and building & construction applications were the two largest world plastics markets.

- Packaging: 44%
- Building & Construction: 18%
- Others: 12%
- Automotive: 8%
- Electrical & Electronics: 7%
- Household, Leisure & Sports: 7%
- Agriculture, Farming and Gardening: 4%

Sources: Conversio Market & Strategy GmbH
The above data are rounded estimations.
Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
European plastics data
“The European plastics industry is in transition to meet its 2050 net zero and circularity targets”.
After a decrease in 2020 due to the Covid-19 pandemic, the European production increased to 57.2 million tonnes in 2021.
For the first time, Plastics – the Facts presents European plastics production data excluding polymers that are not used in the conversion of plastic parts and products (i.e., for adhesives, sealants, coatings, paints, varnishes, textiles waterproofing, or within the production of cosmetics, medicines or chemical processes). Post-consumer recycled and bio-based/bio-attributed plastics production quantities are included for the first time.

As in previous editions, quantities used for textiles or textiles waterproofing are excluded. The scope includes thermoplastics and thermosets.

Including plastics production from polymerisation and mechanical recycling output
In 2021, European plastics production reached 57.2 Mt. Post-consumer recycled plastics and bio-based/bio-attributed plastics respectively accounted for 10.1% and 2.3% of the European plastics production.

Sources: Conversio Market & Strategy GmbH and nova-Institute
The above data are rounded estimations.
Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
*Including plastics production from polymerisation and production of mechanically recycled plastics
1. nova-Institute 2022; data for bio-based structural polymers, preliminary estimations for 2021
In 2021, circular plastics represented about 12.4% of the European plastics production.

In 2021, European plastics production was 57.2 Mt, representing 12.4% of circular plastics.
50.3 Mt

European plastics converters’ demand

European plastics converters’ demand data as published in Plastics - the Facts excludes polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, paints, varnishes, textiles waterproofing, or within the production of cosmetics, medicines or chemical processes). European converters demand data in Plastics - the Facts do not include recycled and bio-based/bio-attributed plastics due to limited data availability. The scope includes thermoplastics and thermosets.

Demand data are built on estimations of quantities bought by European converters, including imports.

Source: Conversio Market & Strategy GmbH based on the input of the Plastics Europe Market Research Group (PEMRG)
The above data are rounded estimations.
European plastics converters’ demand by countries

Countries with more than 3 Mt plastics converters demand

<table>
<thead>
<tr>
<th>Country</th>
<th>2020 (Mt)</th>
<th>2021 (Mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>Belgium/Lux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>2.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Austria</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Portugal</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Hungary</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Romania</td>
<td>1.7</td>
<td>1.7</td>
</tr>
</tbody>
</table>

50.3 Mt European plastics converters’ demand in 2021

Source: Conversio Market & Strategy GmbH based on the input of the Plastics Europe Market Research Group (PEMRG)

The above data are rounded estimations.

Demand for recycled plastics and bio-based/bio-attributed plastics is not included. Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
European plastics converters’ demand by countries

50.3 Mt
European plastics converters’ demand in 2021

Countries with less than 0.5 Mt plastics converters demand

Source: Conversio Market & Strategy GmbH based on the input of the Plastics Europe Market Research Group (PEMRG)
The above data are rounded estimations.
Demand for recycled plastics and bio-based/bio-attributed plastics is not included. Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
Evolution of the plastics converters’ demand (EU27+3)

In 2021, converters plastics demand increased for the first time after two years of decrease.

Source: Conversio Market & Strategy GmbH based on interviews with converters.
The above data are rounded estimations.
Demand data are built on estimations of quantities bought by European converters, including imports.
Demand for recycled plastics and bio-based/bio-attributed plastics is not included. Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
European plastics converters’ demand by polymer type

Source: Conversio Market & Strategy GmbH based on the input of the Plastics Europe Market Research Group (PEMRG)

The above data are rounded estimations.
Demand for recycled plastics and bio-based/bio-attributed plastics is not included.
Plastics – the Facts figures on PA only cover PA6 and PA66.
European plastics converters’ demand by applications

In 2021, packaging and building & construction by far represented the largest end-use markets for plastics in the EU27+3. The third biggest end-use market is the automotive sector.

Source: Conversio Market & Strategy GmbH based on the input of the Plastics Europe Market Research Group (PEMRG)

The above data are rounded estimations.
Demand data are built on estimations of quantities bought by European converters, including imports.
Demand for recycled plastics and bio-based/bio-attributed plastics is not included. Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
European plastics converters’ demand by type

In 2021, almost half of the European plastics converters’ demand was represented by polyolefins.

Source: Conversio Market & Strategy GmbH based on the input of the Plastics Europe Market Research Group (PEMRG)

The above data are rounded estimations.
Demand data are built on estimations of quantities bought by European converters, including imports.
Demand for recycled plastics and bio-based/bio-attributed plastics is not included. Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
European plastics converters’ demand by application and type

Source: Conversio Market & Strategy GmbH based on the input of the Plastics Europe Market Research Group (PEMRG)

The above data are rounded estimations.

Demand data are built on estimations of quantities bought by European converters, including imports.

Demand for recycled plastics and bio-based/bio-attributed plastics is not included. Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.

Numbers behind this graph are available upon request.

Plastics - the Facts figures on PA only cover PA6 and PA66.
European post-consumer recycled plastics use reached 9.9% in 2021

In 2021, the use of post-consumer recycled plastics by European converters reached 5.5 Mt, representing a 9.9% recycled content. This represents an increase of about 20% compared to 2020.

Source: Conversio Market & Strategy GmbH based on interviews with European plastics converters
The above data are rounded estimations.
Data on the use of bio-based/bio-attributed plastics by European converters is not included. Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
Data on the use of the plastics by European converters differs from the plastics converters demand data. This is explained by different scopes (recycled plastics excluded in the demand figures). Process loss in conversion were also taken into account in the use of fossil-based plastics by converters.
Post-consumer recycled content in 2021

RECYCLED CONTENT IN NEW PRODUCTS

- **7.2%** (4 Mt) in 2018
- **8.5%** (4.6 Mt) in 2020
- **9.9%** (5.5 Mt) in 2021

Source: Conversio Market & Strategy GmbH based on interviews with European plastics converters
The above data are rounded estimations.
Data on the use of bio-based/bio-attributed plastics by European converters is not included.
Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
In 2021, post-consumer recycled content continued to grow in the agriculture, building & construction and packaging sectors.

Source: Conversio Market & Strategy GmbH based on interviews with European plastics converters. The above data are rounded estimations. Data on the use of bio-based/bio-attributed plastics by European converters is not included. Polymers that are not used in the conversion of plastic parts and products (i.e., for textiles, adhesives, sealants, coatings, etc.) are not included.
In 2021, the European plastics industry achieved a positive trade balance of 14.4 billion euros.

Source: Eurostat

Official Eurostat denomination: Manufacture of plastics in primary forms

Official Eurostat denomination: Manufacture of plastic products
Top extra EU trade partners (in value)

In 2021, the United States of America, the United Kingdom and China were the top trade partners of the EU27 plastics industry.

Plastics production

<table>
<thead>
<tr>
<th>Imports</th>
<th>Exports</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE UNITED STATES OF AMERICA</td>
<td>18.4%</td>
</tr>
<tr>
<td>SOUTH KOREA</td>
<td>11.3%</td>
</tr>
<tr>
<td>THE UNITED KINGDOM</td>
<td>10%</td>
</tr>
<tr>
<td>SAUDI ARABIA</td>
<td>9.2%</td>
</tr>
<tr>
<td>CHINA</td>
<td>8.7%</td>
</tr>
</tbody>
</table>

Plastics conversion

<table>
<thead>
<tr>
<th>Imports</th>
<th>Exports</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHINA</td>
<td>35.8%</td>
</tr>
<tr>
<td>THE UNITED KINGDOM</td>
<td>11.4%</td>
</tr>
<tr>
<td>THE UNITED STATES OF AMERICA</td>
<td>11.2%</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>7.2%</td>
</tr>
<tr>
<td>TURKEY</td>
<td>7.1%</td>
</tr>
</tbody>
</table>

Source: Eurostat

* Official Eurostat denomination: Manufacture of plastics in primary forms
** Official Eurostat denomination: Manufacture of plastic products
End-of-life management in EU27+3
“Plastics waste recycling rates are 13x higher when collected separately”.
Mixed and separate post-consumer plastics waste collection in 2020

In 2020, 29.5 million tonnes of post-consumer plastics waste were collected in the EU27+3. Plastics waste recycling rates are 13x higher when collected separately compared to mixed waste collection schemes.

In 2020, 29.5 million tonnes of post-consumer plastics waste were collected in the EU27+3. Plastics waste recycling rates are 13x higher when collected separately compared to mixed waste collection schemes.

Mixed waste collection: waste collection system in which end-users do not sort the different types of waste (e.g., household residual waste and municipal waste).

Separate waste collection: waste collection system in which end-users sort the different types of waste on a product level (e.g., household lightweight packaging, WEEE collection, container parks).

Source: Conversio Market & Strategy GmbH

Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.

The plastics packaging waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
Between 2006–2020 plastics waste exports outside the EU27+UK have been reduced by 50%. Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.

Plastics waste recycling rates are 13x higher when collected separately compared to mixed collection schemes.
Evolution of post-consumer plastics waste treatment (EU27+3)

Source: Conversio Market & Strategy GmbH
CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
The plastics packaging waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
Recycling rates for plastics packaging waste are shown under the old plastics packaging recycling calculation methodology.
Post-consumer plastics waste management in 2020 (EU27+3)

In 2020, 35% of post-consumer plastics waste were sent to recycling.

- 23% Landfill
- 35% Recycling
- 42% Energy recovery

29.5 Mt in 2020

Source: Conversio Market & Strategy GmbH
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
The plastics packaging waste data used for the above graph were extrapolated based on 2018 available figures. The above data were rounded.
Recycling rates for plastics packaging waste are shown under the old plastics packaging recycling calculation methodology.
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.

The plastics packaging waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.

1. Countries with landfill restrictions

Recycling rates for plastics packaging waste are shown under the old plastics packaging recycling calculation methodology.

2020 Dutch plastics recycling included some quantities of plastics packaging waste collected in 2019, due to a fire in a local recycling facility in 2019.
Four countries have recycling rates above 40%
Mixed and separate post-consumer plastics PACKAGING waste collection in 2020

In 2020, 17.9 million tonnes of post-consumer plastics packaging waste were collected in the EU27+3.

Plastics packaging waste recycling rates are 80x higher when collected separately compared to mixed waste collection schemes.

Source: Conversio Market & Strategy GmbH

Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.

Recycling rates for plastics packaging waste are shown under the old plastics packaging recycling methodology. The plastics packaging waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.

Mixed waste collection: waste collection system in which end-users do not sort the different types of waste (e.g., household residual waste and municipal waste).

Mixed waste collection: waste collection system in which end-users sort the different types of waste on a product level (e.g., household lightweight packaging, WEEE collection, container parks).

Separate waste collection streams do not contain 100% plastics, since they may be mixed with other materials (e.g., a computer is composed of different types of materials).
Plastics PACKAGING waste recycling rates are 80x higher when collected separately compared to mixed collection schemes.

Source: Conversio Market & Strategy GmbH
Post-consumer plastics PACKAGING waste management in 2020 (EU27+3)

In 2020, the overall European recycling rate for post-consumer plastics packaging reached 46% (under the former Packaging and Packaging Waste Directive (PPWD) calculation methodology), compared to 42% in 2018 – an increase of about 9.5%.

9.5% increase of plastics packaging recycling rate since 2018

17.9 Mt in 2020

46% Recycling

17% Landfill

37% Energy recovery

Source: Conversio Market & Strategy GmbH
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
Recycling rates for plastics packaging waste are shown under the old plastics packaging recycling methodology. The plastics packaging waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
Since 2006, post-consumer plastics PACKAGING* waste recycling has more than doubled

The 2006-2020 plastics packaging waste recycling evolution in the EU27+3 showed a Compound Annual Growth Rate of 5.4%.

2006-2020 EVOLUTION

- Recycling: +110%
- Energy recovery: +76%
- Landfill: -57%

CAGR: Compound Annual Growth Rate
Source: Conversio Market & Strategy GmbH
*From household, industrial and commercial packaging
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
Recycling rates for plastics packaging waste are shown under the old plastics packaging recycling methodology. The plastics packaging waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
Post-consumer plastics packaging waste treatment per country in 2020 (EU27+3)

Source: Conversio Market & Strategy GmbH
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
1. Under the former point of calculation: Materials sent for recycling - Directive (EU) 94/62/EC

The plastics packaging waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
Recycling rates for plastics packaging waste are shown under the old plastics packaging recycling calculation methodology.
2020 Dutch plastics recycling included some quantities of plastics packaging waste collected in 2019, due to a fire in a local recycling facility in 2019.
End-of-life management in selected countries
“In 2020, four countries had plastics recycling rates above 40%”.
From 2006 to 2020, the quantities sent to recycling increased by 69%, energy recovery increased by 19% and landfill decreased by 83%.

2006–2020 EVOLUTION

- **Recycling**: +69%
- **Energy recovery**: +19%
- **Landfill**: -83%

578 kt in 2020

39% in 2020

2% in 2020

Post-consumer plastics waste treatment evolution 2006–2020 (in kt)

CAGR: Compound Annual Growth Rate

Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.

Source: Conversio Market & Strategy GmbH

The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
From 2006 to 2020, the quantities of post-consumer plastics packaging waste sent to recycling increased by 59%, energy recovery increased by 8% and landfill decreased by 100%.
From 2006 to 2020, the quantities sent to recycling increased by 88%, energy recovery increased by 42% and landfill decreased by 20%.

Post-consumer plastics waste treatment evolution 2006–2020 (in kt)

- **Recycling**: 495 → 1,455 kt (CAGR: 25%)
- **Energy recovery**: 495 → 1,178 kt (CAGR: 31%)
- **Landfill**: 3,760 kt → 1,189 kt (CAGR: -42%)

2006–2020 EVOLUTION

- Recycling: +88%
- Energy recovery: +42%
- Landfill: -20%

CAGR:
- Compound Annual Growth Rate
- Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
- Source: Conversio Market & Strategy GmbH
- The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
From 2006 to 2020, the quantities of post-consumer plastics packaging waste sent to recycling increased by 45%, energy recovery increased by 32% and landfill decreased by 16%.

CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
*From household, industrial and commercial packaging
Source: Conversio Market & Strategy GmbH
The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
From 2006 to 2020, the quantities sent to recycling increased by 104%, energy recovery increased by 67% and landfill decreased by 80%.

Post-consumer plastics waste treatment evolution 2006-2020 (in kt)

- **Recycling**: 104% increase from 1,873 kt in 2006 to 3,233 kt in 2018 (CAGR: 3.7%)
- **Energy recovery**: 67% increase from 1,112 kt in 2006 to 2,055 kt in 2018 (CAGR: 5.2%)
- **Landfill**: 80% decrease from 5,419 kt in 2006 to 35 kt in 2018 (CAGR: -10.8%)

CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
Source: Conversio Market & Strategy GmbH
The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
From 2006 to 2020, the quantities of post-consumer plastics packaging waste sent to recycling increased by 95%, energy recovery increased by 47% and landfill decreased by 93%.

Energy recovery
- 2006: 44 kt
- 2008: 898 kt
- 2010: 955 kt
- 2012: 1,409 kt
- 2014: 1,571 kt
- 2016: 1,572 kt
- 2018: 1,752 kt
- 2020: 3,163 kt (CAGR: 2.9%)

Recycling
- 2006: 44 kt
- 2008: 898 kt
- 2010: 1,572 kt
- 2012: 1,571 kt
- 2014: 1,752 kt
- 2016: 2006-2020 (CAGR: 2.8%)
- 2018: 2006-2020 (CAGR: 2.9%)
- 2020: 3,163 kt

Landfill
- 2006: 2 kt
- 2008: 2 kt
- 2010: 3 kt
- 2012: 30 kt
- 2014: 44 kt
- 2016: 2006-2020 (CAGR: 17.5%)
- 2018: 30 kt
- 2020: 55% in 2020

CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
*From household, industrial and commercial packaging
Source: Conversio Market & Strategy GmbH
The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
From 2006 to 2020, the quantities sent to recycling increased by 77%, energy recovery increased by 58% and landfill decreased by 52%.

Post-consumer plastics waste treatment evolution 2006-2020 (in kt)

Recycling increased by 77% (CAGR: 3.3%)
Energy recovery increased by 58% (CAGR: 4.1%)
Landfill decreased by 52% (CAGR: -5.5%)

CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
Source: Conversio Market & Strategy GmbH
The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
Post-consumer plastics PACKAGING* waste treatment treatment evolution 2006–2020 (in kt)

From 2006 to 2020, the quantities of post-consumer plastics packaging waste sent to recycling increased by 70%, energy recovery increased by 53% and landfill decreased by 83%.

CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
*From household, industrial and commercial packaging
Source: Conversio Market & Strategy GmbH
The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
Poland • All plastics

From 2006 to 2020, the quantities sent to recycling increased by 177%, energy recovery increased by 132% and landfill decreased by 18%.

Post-consumer plastics waste treatment evolution 2006–2020 (in kt)

2006–2020 EVOLUTION

Recycling +177%
Energy recovery +132%
Landfill -18%

2006-2020 EVOLUTION

energy recovery +132%
Recycling +177%
Landfill -18%

CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
Source: Conversio Market & Strategy GmbH
The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
Poland · Plastics PACKAGING*

From 2006 to 2020, the quantities of post-consumer plastics packaging waste sent to recycling increased by 120%, energy recovery increased by 85% and landfill decreased by 42%.

2006-2020 EVOLUTION

<table>
<thead>
<tr>
<th>Recycling</th>
<th>Energy recovery</th>
<th>Landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td>+120%</td>
<td>+85%</td>
<td>-42%</td>
</tr>
</tbody>
</table>

CAGR: Compound Annual Growth Rate

Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.

*From household, industrial and commercial packaging

Source: Conversio Market & Strategy GmbH

The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
Spain • All plastics

From 2006 to 2020, the quantities sent to recycling increased by 137%, energy recovery increased by 73% and landfill decreased by 45%.

CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
Source: Conversio Market & Strategy GmbH

The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
From 2006 to 2020, the quantities of post-consumer plastics packaging waste sent to recycling increased by 133%, energy recovery increased by 3.8% and landfill decreased by 43%.

CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
*From household, industrial and commercial packaging
Source: Conversio Market & Strategy GmbH
The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
The Netherlands • All plastics

From 2006 to 2020, the quantities sent to recycling increased by 170%, energy recovery increased by 7% and landfill decreased by 98%.

Post-consumer plastics waste treatment evolution 2006-2020 (in kt)

- Energy recovery increased by 7%
- Landfill decreased by 98%
- Recycling increased by 170%

CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
Source: Conversio Market & Strategy GmbH
The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
From 2006 to 2020, the quantities of plastics post-consumer packaging waste sent to recycling increased by 178%, energy recovery increased by 31% and landfill decreased by 100%.

CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
*From household, industrial and commercial packaging
Source: Conversio Market & Strategy GmbH
The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
The United Kingdom · All plastics

From 2006 to 2020, the quantities sent to recycling increased by 175%, energy recovery increased by 657% and landfill decreased by 72%.

2006-2020 Evolution

- **Recycling**: +175%
- **Energy recovery**: +657%
- **Landfill**: -72%

2006-2020 in 2020

- **Recycling**: 3,931 kt
- **Energy recovery**: 525 kt
- **Landfill**: 231 kt

CAGR: Compound Annual Growth Rate

- **Recycling**: 15.6%
- **Energy recovery**: 7.5%
- **Landfill**: -8.6%

Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.

Source: Conversio Market & Strategy GmbH

The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
The United Kingdom • Plastics PACKAGING*

Post-consumer plastics PACKAGING* waste treatment evolution 2006–2020 (in kt)

From 2006 to 2020, the quantities of post-consumer plastics packaging waste sent to recycling increased by 138%, energy recovery increased by 469% and landfill decreased by 83%.

2006–2020 EVOLUTION

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy recovery</td>
<td>138</td>
<td>329</td>
<td>785</td>
<td>989</td>
<td>1,044</td>
<td>1,145</td>
<td>1,145</td>
<td>1,145</td>
</tr>
<tr>
<td>Recycling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>481</td>
<td>785</td>
<td>1,145</td>
<td>1,145</td>
</tr>
<tr>
<td>Landfill</td>
<td>1,461</td>
<td>253</td>
<td>785</td>
<td>989</td>
<td>1,044</td>
<td>1,145</td>
<td>1,145</td>
<td>1,145</td>
</tr>
</tbody>
</table>

CAGR: Compound Annual Growth Rate
Non-plastics waste (i.e., textiles, adhesives, sealants, coatings, etc.) is not included.
*From household, industrial and commercial packaging
Source: Conversio Market & Strategy GmbH
The plastics packaging consumption and waste data used for the above graph were extrapolated based on 2019 available figures. The above data were rounded.
Outlooks
“Energy and logistics crises leading to uncertainties and challenges for the European plastics industry”.
In 2022, the war in Ukraine reinforced the already existing problems in the supply chains and the high prices for feedstock and energy. High prices, especially in Europe, weakened economic growth and led to a lower demand for plastics.

Source: Eurostat, September 2022
The sharp decline in the European plastics production caused by the Covid-19 pandemic in the first half of 2020 was followed by an even stronger recovery in 2021. However, significant uncertainties remain for end 2022 and 2023 due to the current energy and logistics crises.

Growth rate:

2020: -5%
2021: 10.5%
2022: -4% (prediction with the assumption of no gas shortage in Europe)

Due to geopolitical uncertainties, it is not possible to present a prediction for 2023.

Index 2015 = 100; on a quarterly basis, seasonally and working day adjusted
List of acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Acrylonitrile butadiene styrene resin</td>
</tr>
<tr>
<td>ASA</td>
<td>Acrylonitrile styrene acrylate</td>
</tr>
<tr>
<td>bn</td>
<td>billion</td>
</tr>
<tr>
<td>CAGR</td>
<td>Compound Annual Growth Rate</td>
</tr>
<tr>
<td>CIS</td>
<td>Commonwealth of Independent States</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EU27+3</td>
<td>EU Member States, Norway, Switzerland and the United Kingdom</td>
</tr>
<tr>
<td>EU27+UK</td>
<td>EU Member States and the United Kingdom</td>
</tr>
<tr>
<td>EPRO</td>
<td>European Association of Plastics Recycling and Recovery Organisations</td>
</tr>
<tr>
<td>kt</td>
<td>kilo tonnes</td>
</tr>
<tr>
<td>Mt</td>
<td>million tonnes</td>
</tr>
<tr>
<td>PA</td>
<td>Polyamides. Plastics – the Facts figures on PA only cover PA6 and PA66</td>
</tr>
<tr>
<td>PBT</td>
<td>Polybutylene terephthalate</td>
</tr>
<tr>
<td>PC</td>
<td>Polycarbonate</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PEEK</td>
<td>Polyetheretherketone</td>
</tr>
<tr>
<td>PE-HD</td>
<td>Polyethylene, high density</td>
</tr>
<tr>
<td>PEI</td>
<td>Polyetherimide</td>
</tr>
<tr>
<td>PE-LD</td>
<td>Polyethylene, low density</td>
</tr>
<tr>
<td>PE-LLD</td>
<td>Polyethylene, linear low density</td>
</tr>
<tr>
<td>PE-MD</td>
<td>Polyethylene, medium density</td>
</tr>
<tr>
<td>PEMRG</td>
<td>Plastics Europe Market Research Group</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene terephthalate</td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethyl methacrylate</td>
</tr>
<tr>
<td>POM</td>
<td>Polyoxymethylene</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PPA</td>
<td>Polyphtalamide</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>PS-E</td>
<td>Expandable polystyrene</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>PSU/PES/PPSU</td>
<td>polysulfone/polyethersulfone/polyphenylsulfone</td>
</tr>
<tr>
<td>PUR</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
<tr>
<td>SAN</td>
<td>Styrene–acrylonitrile copolymer</td>
</tr>
</tbody>
</table>
Plastics Europe

Plastics Europe is the pan-European association of plastics manufacturers with offices across Europe. For over 100 years, science and innovation has been the DNA that cuts across our industry. With close to 100 members producing over 90% of all polymers across Europe, we are the catalyst for the industry with a responsibility to openly engage with stakeholders and deliver solutions which are safe, circular and sustainable. We are committed to implementing long-lasting positive change.

www.plasticseurope.org

EPRO

European Association of Plastics Recycling and Recovery Organisations

EPRO is a pan-European partnership of specialist organisations that are able to develop and deliver efficient solutions for the sustainable management of plastic waste, now and for the future. EPRO members are working to optimise national effectiveness through international co-operation: by studying successful approaches, evaluating different solutions and examining obstacles to progress. By working together EPRO members can achieve synergies that will increase efficient plastics recycling and recovery. Currently 19 organisations in 14 European countries, South Africa and Canada are represented in EPRO.

www.epro-plasticsrecycling.org